
/ Queen Eicabeth College

~ COMPUTER UNIT

K300 Computer Science project 1976

and its applications

He W. Thimbleby

Queen Elizabeth College, University of London
_ Campden Hill Road, London W8 7AH

K300 Computer Science project 1976

A General. Purpose: Macrogenerator

and its applications

H. W. Thimbleby

K300 computer science project

Acknowledgements are due to Brian Meek my project

supervisor, Peter Brown for sending me the LOWL

program tapes and documentation, Craig Johnson for

allowing me access to the Elliott 905 at the Royal

College of Art and to Joan Boneham for typing the

script.

H.W. Thimbleby.

May 1976,

CONTENTS

1. Introduction
1.1 introduction iv
1.2 obsolescence iv
1.3 notation v

PART I

2. General Purpose Macrogenerator
introduction 1
macro DEF 3
macro COND 5
macro UPDATE 6
macro BAR 7
macro LEG 8
macro VAL 9
macros NOTE; TRACE, UNTRACE 9
layout 10
diagnostics 10

O error messages 11
1 running the macrogenerator 12

2.12 the GPM interior 14
2.13 fundamental differences 15
2.14 program commentary 16
2.15 adding new macros 23
2.16 assembling and loading 23
2.17 examples 24

N
N
N
N
N
N
N
Y
N
N
N
D

o
s
e

e
e
v
e
e

a
n
e
n
v
e

H
E
H

W
O
O
U
I
U
D
U
N
E
W
N
E
O

PART II

A_low language application of GPM

3. The LOWL translator
introduction 28
using LOWL 24
translator efficiency 30
Pass 1 31
Pass 2 32
Transput 35
summary of LOWL 39
LOWL instructions 40
the run-time systems 41

P
r

ee

e
r

e
r
)

D
A
L
A
L

OT

T
O

O
G

WO

B
D
T
N
A
U

P
W
D

4. ALGEBRA
4.1 introduction 43
4.2 using ALGEBRA 44

5. ML/I
5.1 restrictions and additions
5.2 using ML/I 45
5.3 character set 45
5.4 error messages 46
5.5 integer calculations 46
5.6 layout keywords 46
5.7 macro variables 46

-ii-

APPENDIX

A. The 903 and its assembly language

A.1 description of the 903 1
A.2 the assembly language SIR 4
A.3 program structure 6
A.4 information given by SIR 7

Addendum

References

-iii-

1.1 Introduction

The main purpose of the project was to devise and

implement a new language for the Elliott 903 computer.

The original plan was to develop the language translator

using a high level language, which would be done on a

separate computer. In order to facilitate a bootstrap

onto the 903 an extended version of the General Purpose

Macrogenerator was written.

It was soon realised that the macrogenerator provided a

means for translating the language LOWL | in which several

systems programs have been written. These programs

include ML/T and SCAN’ which themselves provide, or can

be taflored to provide, the facilities that the new

language covered. Since these programs are standard (they

have been implemented on other computers) it seemed to be

worthwhile to change the course of the project to

encompass their implementation.

The bulk of this report is documentation for the General

Purpose Macrogenerator, in its extended form, and the

LOWL translator. The machine independent documentation of

the LOWL software is fully covered by other reference

manuals,

1.2 Obsolescence

The main emphasis of this report is the documentation of

several well tested programs that were implemented during

the course of the project. The programs are of some

practical use; as such they are subject to revision from

-iv-

time to time. However they will remain available with

the features described here unless under some circum-

stances they are found to deviate from the behaviour

that might be expected from their informal description.

This is stressed because there may be logical errors in

the algorithms. Revisions will always attempt to maintain

the external artefacts of the software even if this

engenders radical internal changes.

“1.3 Notation

The characters used in describing the General Purpose

Macrogenerator, "$? <>, ! 3", are arbitrary and may

be replaced by any other characters (excluding digits and

"st or "=") without affecting semantics.

In the few places where syntactic descriptions are given,

Vienna notation has been used. A symbol that is under-

lined stands for what it describes, all other symbols

stand for themselves. Meta syntactic marks therefore are

not underlined.

Braces (curly brackets) enclose an item which may be

repeated but must occur at least as many times as

indicated by the subscript on the closing brace. If the

subscript is omitted the item does not appear in all

possible productions.

PART I

2: General Purpose Macrogenerator

introduction 1
macro DEF 3
macro COND 5
macro UPDATE 6
macro BAR 7
macro LEG 8
macro VAL 9
macros NOTE, TRACE, UNTRACE 9
layout 10
diagnostics 10
error messages I11

running the macrogenerator 12
the GPM interior 14
fundamental differences 15
program commentary 16
adding new macros 23
assembling and loading 23
examples 24

©
6

©
©

8
e
e

e
e

e
e

e
e

8
H
E
R
E
S

e
H

H
O
U

A
U
N
B
U
A
N
E
O

N
N
N
N
N
N
N
N
N
N
N
Y
N
N
N
N
N
Y
N
N

S
A
W

E
P
W
N
E
H

O

2.0 The General Purpose Macrogenerator

The general purpose macrogenerator (GPM) is a program

for symbol manipulation; it provides a powerful short-

hand notation which can be used to great effect to

extend assembly languages.

The GPM, in its original form,is described elsewhere.

However the version for the 900 series computer has

several extensions which considerably ease its use.

The GPM normally copies characters from the reader to

punch directly, occasionally printing monitor information

on the on-line teleprinter. The direct copying stops when

the GPM recognises a macro call; then, rather than using

the reader the GPM reads the definition text of the macro.

The macro, then, is a shorthand representation of its

definition. For instance there might be a macro PI with

definition 3.14159. Then any occurrence of a macro call

to PI is effectively replaced by 3.14159.

A macro call has the following syntax:

$ macro name { > paranever } 5

where the meta syntactic marks n{n and min mean ‘any

number of times - including zero',

Examples are:

$PI; $ABS,-6;

$GOSUB, INPUT, CHAR;

Each parameter, including the macro name, may include

further macro calls. These are then evaluated before the

call containing them. Thus $$PI;; is a call to a macro

-l-

called 3.14159. It is often necessary to inhibit

evaluation of parameters: to do this, text is bracketed

between string quotes. Evaluation of text enclosed

between string quotes is simply a removal of the outer

pair of string quotes and a direct copying of the

remaining text. String quotes are represented by matched

angle brackets "<<" and ">",

$GOSUB, INPUT, CHAR;

is a macro call to the macro GOSUB, with two parameters

INPUT and CHAR.

$GOSUB, < INPUT, CHAR > ;

is a macro call to the macro GOSUB but with a single

parameter INPUT, CHAR.

The definition text of a macro may contain references to

ay its actual parameters by formal parameters 70,71

79, ?A......?2 corresporiding to the macro name itself,

the first parameter, the second the thirty

fifth,

Suppose GOSUB has a definition text:

li? i

8 ? L+l

5 2? 2

Then the macro call $GOSUB, INPUT, CHAR; is evaluated to:

_11 INPUT

8 INPUT + 1

S CHAR

Macro calls such as this may considerably shorten the

hand written program, and help ensure its accuracy.

Suppose that such a program failed to work correctly. It

-2-

would be useful to discover the location of the fault,

and to do that the macro GOSUB might be redefined to

produce some helpful information such as a call to MESS

or ZOUTI (which are string and integer output routines).

When the program is running correctly, simply redefine

GOSUB as before, process the source tape using the GPM

and, lo, a debugged program with no debugging routine

calls! Sometimes it might be better to have calls to a

completely separate macro DEBUG. When the program runs

correctly DEBUG is redefined as nothing and the source

processed again.

2.1 Macro DEF

Macros are defined using a special inbuilt macro DEF

which takes two parameters: the name of the macro to be

defined and its definition. The macro name is the first

and its definition the second parameter.

The macros PI and GOSUB would have been defined thus:

$DEF, PI, 3.14159;

$DEF, GOSUB, < 11 7 1

8? 1+ 41

5 ?2>3

Notice how string quotes have been used in the second

definition. Before the macro DEF is called and the

definition performed the parameters are evaluated

yielding GOSUB and 11? 1

8? 1+

5? 2

-3-

If there had been no string quotes then ?1 and ?2 would

have been evaluated. That would only make sense if this

definition itself occurred within another definition text

or possibly in a parameter list of another macro call.

The definition of a macro lasts until it is superseded

or until it passes out of scope. Usually a definition

is global and remains in force until it is superseded,

However a definition that occurs within a parameter

list only remains in force during the evaluation of

the macro call and its corresponding definition

text.

An illustration of these scoping rules is an interesting

method (but pointless because there are more readable

and efficient ways) for making choices based on equality:

if a=-b then c else 4

It is done as follows:

define a as d

b as c

call the macro a

Now if a and b are the same, then when b is defined this

is a redefinition of a. When the macro a is called the

result is c. If a and b are distinct then the definition

of b does not supersede the definition of a which is

therefore still d. So when the macro a is called the

result is d, as required.

When a macro is redefined the previous definition does

not 'evaporate' in the sense that the storage required

for the definition is not released for other purposes,

and consequently many conditionais based on the method

-4-

above would gradually use up all the available definition

storage, with virtually useless information.

The macro definitions for a and b must therefore have

a restricted scope; this way the storage required for

the now temporary definition may be reused later for

other purposes.

All this is achieved by

$a, $DEF,a,d; §DEF,b,c;;

Before the macro a is called, its parameter

SDEF,a,d; $DEF,b,c3

is evaluated. This creates two definitions of local

scope. The macro a is then called and yields either c

or d. Note that it is permissible to supply too many

parameters, more than those required. (In fact an untidy

restriction of the current version of the GPM is that

macro definitions may not occur in a parameter that has

a corresponding formal parameter that needs to be

evaluated. This is due to the fact that a local definition

fonkty) does have a side effect ~ it yields a value which

has no external representation and therefore cannot be

used.)

“22 Macro COND

The alternative method is to use an inbuilt macro COND.

COND is a special macro that can take any number of

parameters, possibly more than 35 if needed.

A call to COND has this form:

$COND ,a { bi,ci | > ds
1

With the following semantics

-5-

if a= bi then ci else d (least i)

This gives exactly the same effect as

$a, SDEF,a,d; { SEF, bi, ci; } 3

This is emphasised because the chosen ci or d is

evaluated twice; once as a parameter of COND, then when

the definition text of macro a is evaluated which is

then a copy of the once-evaluated parameter.

Thus $COND,A,,,<<X > 3 yields X, not <X>.

‘2.3 Macro UPDATE

Prequently there is a need to redefine an existing macro,

and as this may happen any number of times during

processing it would be wasteful to create totally new

definitions with their associated overhead in store

grabbing. The inbuilt macro UPDATE overcomes this problem

to a large extent.

The parameters for UPDATE are equivalent to those of DEF,

but the macro must already exist and its new definition

text must be no longer than the original definition text.

This is because the storage once allocated for a

definition cannot be extended, though it need not all be

used.

$DEE, X, YZ;

$X; yields YZ

$UPDATE,X,A;

$X; yields A

$UPDATE ,X,YZ;

$X; yields YZ

There is a trap which the unwary may fall into, that of

attempting to update a definition which is currently

~6-

being evaluated. This mistake is a terminal error when

detected.

Consider ~

X has definition text

A $UPDATE,X,$Z3;B

Z bas definition text

YYYYYYYYYYYYYYYY Y

Depending on one's interpretation this should mean that

the call $X; should update X as YY....Y and either yield

AB or AY. Because of this doubt both cases are illegal.

It is left as a trivial exercise to see how the problem

can be avoided and yield whichever of the alternatives

is required.

The GPM is a very powerful tool in the hands of an

experienced programmer, and its generality does not suffer

for the restrictions the monitor system imposes in order

to make life safer, but possibly less exciting.

2.4 Macro BAR

The GPM also provides rudimentary facilities for integer

arithmetic opérations and for making decisions on their

results.

The macro BAR can add, subtract, multiply, divide or find

the remainder of two numbers.

SBAR, op, ny ms _
calculates and yields n op m

‘Top! may be either +, -,*, /, or R for remaindering

which is defined

nRm = n=ia* (n/m)

The range of integer values permitted is -131072 to

-7J-

*131071, and the numerical effect of overflow is

undefined.

The representation of numbers has been chosen to allow

"special effects' - or tricks.

A number has the following syntax:

{neither-sign-nor-digit } { sign } { aigit} Ll {non-aigie}

There must be at least one digit. The characters

preceding: the signs and digits are ignored. The sign may

be either '+' or '-' which are treated as monadic

operators:

~ number gives the negative of the number

+ number gives the number directly

Thus '=-1' has the same value as '+1' and '1'.

This representation is only significant where ultimately

it leads to a call of an inbuilt macro that makes use of

the numeric value. Elsewhere the interpretation given to

numbers is external to the GPM.

The macro definition text containing

2 -?2

may well generate '2 ~-+1', which probably was not

expected.

The result of BAR is a left justified number signed only

if it has a negative value, with no trailing spaces.

The macro COND is not sufficient for testing ranges of

numeric values; for instance for a macro call to evaluate

'A' if its parameter is between 1 and 100 would require

a call to COND with 202 parameters. The inbuilt macro

LEG overcomes this problem:

-8-

$LEG, number,l,e,g;

results in 1, e, or g evaluated depending on whether

the number is less than zero, zero, or greater than zero

respectively.

2.6 Macro VAL

A macro that sometimes simplifies programming, though

it is rarely necessary, is the inbuilt macro VAL which

takes a single parameter. VAL yields the unevaluated

definition text of the macro corresponding to its only

parameter.

‘2.7 Macros NOTE, TRACE, UNTRACE

The three remaining macros are to help in monitoring

the progress of macro processing.

NOTE takes a single parameter which is immediately

output on the on-line teleprinter in the form:

**MONITOR: (parameter)

TRACE takes a single parameter which must be a macro

name. Subsequent calls to that particular macro, as

opposed to calls to previous or subsequent distinct

definitions with the same name, cause: simple tracing

information to be printed in the form

ENTERED (macro-name)

ARG: (parameter-1)

ARG: (parameter-2)

The macro UNTRACE returns a macro to its default state:

no tracing information is given when the macro is

entered.

2.8 Layout

In the practical use of the GPM, macro calls and macro

definitions may straddle several lines, and this may be

inconvenient.

A character "!" followed by consecutive new lines is

evaluated to nothing.

$DEF,A,!ALL ON!

ONE LINE;

$A; yields ALL ON ONE LINE.

'2.9 Diagnostics

When the GPM monitor system detects a mistake the monitor

gives a fault message, a trace back giving details of the

circumstances that lead to the fault and a list of all

the current macro definitions.

An example would be

**MONITOR: UPDATE TOO LONG

ENTERED : (UPDATE)

ARG: (xX)

ARG: (YYYYYY)

NOT ENTERED: (OOPS)

**MONITOR: GPM ABORTED

CURRENT MACROS

~-- (x)
VAL: (SHORT)

ae (OOPS)

‘

~10-

2.10 Error messages

STACK OVERFLOW

There are too many definitions or some macros are deeply

recursive - in which case the trace back information can

use up a lot of paper.

UNMATCHED ;

The semicolon was not preceded by adollar . sign but

occurs in a position where it ought to initiate a macro

evaluation.

UNQUOTED ?

The question mark occurs where there are no possible actual

parameters. It occurs in the source text in an evaluable

position.

BAD ARGUMENT NUMBER

The character following a question mark is not alphameric.

NO ARGUMENT n

Actual parameter n was not supplied in a call to a macro

requiring it.

INCOMPLETE CALL

The definition text has terminated before a macro call

initiated within it was completed. This often occurs when

a semicolon is missed out in a macro definition, e.g.

$DEF,A, < $B? 3 $A3; is illegal and is not.a call to macro

B.

UNDEFINED MACRO

An attempt has been made to call an undefined macro, or

refer to its definition text.

UNMATCHED >

There is no corresponding opening string quote.

-11-

UPDATE TOO LONG

The new definition for a macro is longer than its

original. In the current macro listing the definition

text of the macro is given as if the update was not

attempted.

BAD NUMBER

An attempt has been made to use a non-numeric string

where a number was expected.

INVALID CALL

This occurs when the effect of an inbuilt macro is not

defined. This happens under these circumstances:

1. BAR not supplied with +, -, *, / or R.

2. VAL given an inbuilt macro.

3. an attempt has been made to substitute an evaluated

call to DEF for a formal parameter.

UPDATING ENTERED MACRO

A macro has directly caused its own updating before

completion of its call.

WARNING CHARACTERS EQUAL

It is possible to define a new set of the characters

"$,<> 25 1. This message is given when the same

character has multiple meanings.

The method that characters may be changed is described

below.

2.11 Running the GPM

The GPM is distributed as a single SCB tape which may be

loaded under initial instructions in the normal way. On

completion of a successful load the GPM identifies itself,

-12-

gives its version number, a list of entry points and all

the inbuilt macro names.

There are three entry points:

320 = run the GPM

All user definitions of previous runs are destroyed

unless the GPM was halted by reading a halt code

character. Thus entry at 32 corresponds to the

normal 8 and 9 entries for "enter" and "continue",

but the choice is made by the GPM itself.

give trace back

Entry at 33 stops the GPM and enters the monitor

system to give a standard trace. The GPM itself is

aborted. .

change warning character set

A list of the new character set should be punched

on the tape and read by the reader. The on-line

teleprinter outputs a table of the standard set

against the last and new sets of characters. If

any warning character is defined as carriage return

then this is given in the table as NONE. There is

no external representation of NONE} the character

and its effects are now inaccessible.

The GPM accepts the full ISO character set, all characters

are significant except -

runout, rubout, carriage return

which are all ignored.

-13-

The halt code character halts the GPM processing, but

is otherwise handled as any other character. It may even

be defined as a warning character.

The GPM does not check for even parity: this allows macros

to generate binary data or legible titles on tape. Although

hardware may ignore parity the GPM treats odd and even

representations of the same character as distinct. This

may give rise to curious messages such as "UNDEFINED

MACRO (DEF)" because the characters D,E,F do not all have

even parity in the call or reference.

The default stack size is 3K words, which is quite adequate

for most purposes. The GPM may be configured to give a

larger stack, but the advantage of this restriction is

that the GPM never corrupts the contents of the high end

of core, Consequently the GPM may be loaded together with

other programs, the assembler in particular. The standard

entry points are not corrupted, and these may still be

used.

The GPM is also available as a symbolic SIR tape, for

those who wish to configure their own systems. The next

section describes the GPM's working in sufficient detail

for it to be altered to suit new needs.

- 2,12 | The GPM ‘interior

This section cannot be understood Clearly without
- &

reference to part 2 of C.Strachey's paper. Nevertheless

reading this and the source program should be sufficient

-14-

to make minor changes, such as changing the stack size,

making the program operate on a different interrupt

priority or changing the transput facilities, for

instance.

Due to its bulk the source program does not contain

(many) comments.

2.13. Fundamental differences

1. The string quote depth counter, Q, is always one less

than in the CPL program. Thus text is evaluated when

Q=0, not 1.

2, Warning characters have an internal representation,

which is independent of any external representation.

$ is represented by value -2

< -3

! -4

? -5

5 -6

5 -7

s -8

marker -9

There is no significance in the actual values themselves,

other than being negative.

3. An item on the environment chain has two additional

words:

Eo
t

E

zero | trace? name | text ‘marker

-15-

The zero serves as an ‘illegal' character to trap

attempts to use the definition as text and the trace

flag is normally also zero but is set to -1 after a

call to TRACE. The first zero will only occur if the

definition is isolated and not precedéd. by another

definition on the stack. The sequence marker/zero never

occurs but appears as\ marker.

4, The vector ST is a label with value 10. All references

to ST are therefore ten less than the actual machine

address. Hence ST(P ~n) is in SIR

OP

/4 ST-n

when n ¢10.

The storage allocated for the stack actually comes after

the program constant pool, so the values of stack pointers

are at least 2K odd.

5. The monitor system is completely different, and is

entered by jumping to label Mn where Mn is a suitable

diagnostic section. The monitor system never returns to

the GPM proper - all entries cause the GPM to abort.

lL. Defining new warning characters.

Characters 0, and 255 are ignored.

In writing the table on the teleprinter characters

10, 141 and 160 are represented (in full) by NEWLINE,

NONE and SPACE.

2. Program entry at 32.

A has the last character read; if it was halt (20)

control returns to the input routine. Otherwise the

environment is reset:

H:=P:=F:=C:=Q:=0

:=SETE

$:=SETS

and control transfers to the START loop.

The section labelled NEXTITEM comes before START as

this eliminates a jump at the end of the section.

3. The conditional goto on warning characters in the CPL

program is replaced by a direct case switch if A is

negative. The last element of the switch table is not

a jump but an entry to FN.

4, APPLY

After looking up the macro using FIND, ST (A-1) is

examined to see if the macro is being traced.

5. LOADARG

Alphabetic formal parameters are also permitted.

6. ENDEN

If F>P goto M5.

7. VAL

VAL checks that the value of the macro is not negatives

if it is it must be an inbuilt macro which, of course,

has no external value.

8. TRACE

sets ST (A-1) to -l.

9. UNTRACE

sets ST (A-1) to +0.

10 .UPDATE

Uses W to enter FIND and runs down the P-~ chain to check

that the macro has not been entered.
-17~

11.BAR

Initial state:

Po} Co | 4BAR 2+ | a jnumber | b! number | marker
?

P goes toK goes toW

DEC is uséd to put the result on the stack.

12.NOTE

Calls the monitor routine ITEM which prints a LID

(lengthtidentifier, e.g. 4/DEF) on the on-line

teleprinter, between matched round brackets.

13.LEG

Calls BIN, and chooses parameter. C is- then set to

point to the first character of that parameter and

the end of the parameter is set to marker. LEG then

exits to START, not ENDFN. The START loop then uses

as text the parameter of LEG as if it was a definition

text. When marker is read ENDFN is used to delete LEG

from the stack in the normal way.

Initial state:

Co |] 4LEG] 2 Oj] ax] by] cz] marker
—e t

P S

Final state:

x Co} 4LEG] 2 Of ax ,” marker 2z | marker

P Cc | not used

S

14.COND

The action of COND is much the same as LEG, but the

parameter is chosen in a different way.

-~18-

15. Subroutine BIN uses LINK as its return address. If

the A-register points to the start of a LID containing

a number, entry to BIN will decipher the number and

return with its value both in W and the A-register.

X is set to point at the start of the next LID, or

marker if there is none. If BIN is éntered at BIN-1l

then the A-register is loaded from X. If BIN is

entered at BIN+1 then it is assumed that Y points to

the LID.

BIN starts like this:

4 X

BIN 5 Y

4... (A-reg loaded)

Initial state:

a | +456 | Dd
S

x entry BIN-1
A-reg BIN

Y BIN+L

Final state:

a | +456 b
4

x

W=A-reg=456

i6. DEC is used to load a number onto the stack, and

return to ENDFN.

DEC starts like this:

4 W

2 +0

PEC BIT 5 W

4 see

-19-

17.CHECKARG

Uses a backward table ARGS to check that inbuilt

macros are called with at least the correct number of

parameters. Exit is either to M4 to give a fault

message or a switch to JIM (jump if minus) which is a

table of gotos to the various macros.

18.ITEMP

Uses the routine ITEM to print the macro name at the

head of the P-chain.

19. MONITOR

Calls routine WRITE to print "newline, **MONITOR:"

and then calls WRITE again to output its own parameter.

20.WRITE

Simply outputs its parameter to the on-line teleprinter.

Method of entry:

11 WRITE

8 WRITE +1

ETEX aT"

Which would print "TEXT, newline." '4' represents a

newline and ''' marks the end of the parameter.

‘WRITE will automatically give a newline if the end of

the current line is reached, the variable CHARS is

incremented each time a character is printed. There

is a little free space: the newline is given before

the physical end of line, this allows output such as

NO ARGUMENT n

not to need to increment CHARS when n is printed, {n

will be the character in ST(C) }.

-20-

WRITE may be used to output single characters and

take newlines as required. Before entering WRITE for

the first time set MASK:=0.

To output a newline enter at NEWL, otherwise at OP-2,

with the character in the A-register. Control will

return to rv WRITH+2.

21.ITEM

Uses WRITE to print the characters of a LID, character

by character.

al name

hereg entry to ITEM+2

ITP ITEM+4

~reg ITEM+1

If a=O then, when ITEM was called, the LID cannot have

been completed. ITEM then gives all characters upto

ST(S-1) and prints "...INCOMPLETE".

22.FIND

FIND looks up a LID in the E-chain. If it has not been

defined the monitor system is entered.

Initial state:

a
t

W

name

entry to FIND+2

-reg FIND +1

Final state:

—~N\ re -chain

trace? | Eo} LID] a

W

4

A

-21-

23.LOAD

Depending on H, loads a character onto the stack or

punches it.

To load A-register enter at LOAD+1

To load A LOAD +2

On output, warning characters are converted to their

external representation.

24.NEXTCH

Pops a character from the stack or reads from the tape

reader. Character values 0, 141 and 255 are ignored.

A halt code causes a dynamic stop inside the routine;

if the GPM is re-entered, A=20 and control jumps to the

instruction after the dynamic stop.

On exit A and the A-register both contain the value

read. Warning characters are converted into their

deernal representation.

25.HELP

Returns to rvLINK+1, entry is HELP.

HELP prints a single line of trace back information.

Before entry, set Z2:=P,Y:=F,K:= maximum number of

parameters to be printed, including the macro name

itself. On exit K=1 and either Z or Y will have

advanced down their chains.

26.Monitor system entry points:

MO Stack overflow

ML Unmatched;

M2 Unless H=0, unquoted warning character

M3 Bad:. parameter number.

M4 Parameter missing

MS Incomplete call

-22-

M6

M7

M8

M9

M10

MIL

M12

M13

M14

ML5

(not used)

Undefined macro name

Unmatched

Update too long

Bad number

Give trace back

Abort, list current macros

Invalid call

Multiple definition of warning character

Updating entered macro

All entries give a message and goto Mil except M11

which goes to M12, and M12 which enters a dynamic

stop.

Four things must be done to add a new "inbuilt" macro.

1. The environment chain must be extended and the pointer

SETE adjusted accordingly.

2. The number of parameters (minimum) must be added into

the table ARGS, as a negative number.

3. A jump must be added into the table JIM.

4, The macro machine code must be added somewhere in

dead code.

''2,16 Assembling and loading

The program has the following map:

~23-

entry points

set warning characters

first GPM proper

segment monitor system

some routines

initial inbuilt environment

constant pool

start. of stack
second
segment identification of program

There is a global SETS, which on assembling the second

segment is set to the word beyond the end of the constant

pool of the first segment offset by 10.

The second segment also contains the program identification

a call to WRITE, which is overwritten as soon as the GPM

is entered because it is at the base of the stack.

To assemble the GPM, enter at 8 and note the first and

‘Text messages. Enter at 9 and note the first and next

messages.

The sections of core that are dumped to obtain a single

SCB tape are then from the first first to the first next,

and from ENTRY to the second next. The program should

finally trigger to ENTRY.

‘2,17 | Examples

1. SIR integer division

$DEF DIV, < 14 8176

13 ?1

14 8191);
-24-

2. Expanding for statements

Problem to define a macro FOR which produces several

copies of a piece of text,

$FOR,I,1,4, € 4 X$I;

5 P+$I;

>3

to generate 4 X1

5 P+tl

4 X2

5 P+2

5 P+3

5 P+

Solution:

$DEF,FOR, < $SUBFOR,?1}!

$BAR,+,0,233,24,

$DEF,?1;XXXXXXX;

SUPDATE 371, $BAR,+,0,7235> 3

$DEF, SUBFOR, < 23

$COND,$71;,272, <>,

<SUPDATE, ?1 ,$BAR,+,1,$?1:;

$SUBFOR, ?1

>>

> ?2 4, ?3 3

3. Formal differentiation

Problem: given a prefix expression, print»vits derivative,

e.g.

-25-

$D,$+,8X3,$Y555

is to yield

D/DX X+Y¥ = 14+DY/DX

Solution:

$DEF,X,<X,1>;

$DEF,Y, <Y,DY/DX>;

$DEF,D, <D/DX?1=?2 >;

$DEF,+, < (71423), (22424) >;

S§DEF,*, <21*23, (21*24+22*23) >;

SDEF,SIN, < SIN(?71) ,?2*COS(?1) >;

How this works is left as an easy exercise for the

reader. How could this idea be extended (i) to remove

singular cases, e.g. 1*X or X+#0, (ii) to eliminate

redundant brackets e.g. X*(Y*X).

(Hint: only convert to infix notation when printing

the result)

Delayed SIR code

Very often it is inconvenient to write out-of-line

jumps as this decreases legibility.

Compare two versions of a routine to count the number

of set bits in a word.

ie) +0 (clear B and Q-registers)

4 WORD

LOOP 9 MSD SET

7 CLEAR

SHIFT 14 1

8 LOOP

» =26-

MSDSET 10 1 (increment B-register)

8 SHIFT

CLEAR 4 1

e) LINK

/8 1 (return)

with this:

fe) +0

4 WORD

LOOP 9 $L0C, 10 1

8 SHIFT;

7 $L0C, 4 1

O LINK

/8 1;

SHIFT 14 1

8 LOOP

$POOL;

The macros LOC and POOL might be defined as follows:

$DEF,POOLT, a very long string;

$UPDATE, POOLT, ;

$DEF, POOL, < $POOLT;

$UPDATE, POOLT, <> 333;

§DEF, NAME, 1 ;
$DEF, LOC, < LSNAME;

SUPDATE, POOLT, L$NAME; 71

$POOLT; ;

§UPDATE, NAME, $BAR,+,1, $NAME3;;)

~27-

PART II

A low language application of GPM

3. The LOWL

O
T

ON

OT

ON

O
O

e
e

©
e
e

e
e

e
e

W
O
O
N

w
P
W
N

4, ALGEBRA

4.1
4.2

5. ML/I

w
o
n
t

u
i
t

o
e

e
e

we
we

M
A
U
R

A
N
N
E

translator

introduction 28
using LOWL 24
translator efficienty 30
Pass 1 31
Pass 2 32
Transput 35
summary of LOWL 39
LOWL instructions 40
the run-time system 41

introduction 43
using ALGEBRA 44

restrictions and additions
using ML/I 45
character set 45
error messages 46
integer calculations 46
layout keywords 46
macro variables 46

45

3.1 The LOWL translator

i
LOWL is a low level machine independent language. A LOWL

program can be regarded as a sequence of macro-calls

which are to be translated into a particular assembly

language.

Machine independence is achieved by two devices. Most of

the macros have supplementary arguments some of which may

be redundant for a particular target machine and all

structure manipulation such as calculating addresses is

done from a basis of constants. The constants specify the

machine and are set to represent values, the number of

bytes per word for instance.

The LOWL translator for the 903 takes as input a program

written in LOWL and compiles this into a complete self-

contained program in SIR? The LOWL translator has two

passes; first the LOWL program is preprocessed into a

different format, secondly the processed program is

translated by an extended version of the GPM.

There are several programs written in LOWL, and all will

run within the 8K words of the 903.

They are -

1) LOWLTEST this program tests the translater, and

gives suitable information if any errors

are found,

2) ALGEBRA a demonstration program for students

learning or researching into logics..

3) UNRAVEL produces 'intelligent' core dumps. ®

4) ML/I a powerful general purpose macrogenerator?”

-28-

5) SCAN a simple textual analysis programming
Zé

language.

O£ these programs only ML/I and UNRAVEL present problems

because of their size. ML/I cannot be assembled in 8K

because its length exceeds the core space that is

available when the leader is also in core; and UNRAVEL,

although smaller, is a bit pointless because it occupies

so much core that very little else is left to be dumped!

3.2 Using LOWL

The preprocessing program is written in Algol 60; it is

entered at 10 and simply reads the LOWL program tape and

simultaneously punches a processed tape suitable for the

next pass.

The reason for this first pass is that the first few

programs to be translated were only available in the

processed form.

The second pass does the real work of translation. It

should be entered at 32 with the correct run-time system

in the reader, The different LOWL programs have different

run-time systems so the correct tape should be used at

this stage.

After reading the run-time system the translator is

entered at 32 again to read the processed LOWL program.

The tape punched by the second pass is a complete SIR

program which may be assembled in the normal way (unless

it is ML/I).

~29-

3.3 Translator efficiency

Unfortunately translation from LOWL to SIR is: not trivial,

mainly because the 903 uses a reverse subtract (negate

and add) instead of the LOWL forwards subtract. LOWL also

uses three conceptual registers; the 903 has only two

that can correspond to them.

The program ALGEBRA is the shortest piece of LOWL software

excluding LOWLTEST, and was translated to see where the

main inefficiencies arise.

When a subtract instruction is translated, a reverse

subtract instruction is generated. Thereafter the contents

of the SIR register will be minus the contents of the

corresponding LOWL register. The LOWL translator will

leave the SIR register in this state as long as possible,

negating the register only when the LOWL logic

necessitates the correct sign, as when the register is

stored.

The first translation of ALGEBRA required 1590 words for

the program, and of that 69 were redundant and might be

removed by a single pass peephole optimiser. 29 of these

were an unused part of the run-time system which is not

required by ALGEBRA.

This gives an expected redundancy in translation of about

2 ae

Ni
e

The table below gives an indication of the frequencies

and causes of the redundancies.

~30+

Table 3.1

Cause Space

Unused run-time system 29

Negating before adding a constant 18

Re~loading modifier 7

Multiplying variable by one 4

Some run-time system could be open 3

Unused run-time system exits 2

Negating before labelled load 2

Redundant indirect load 2

Redundant load after label* 1

Subtracting a constant 1

* Not redundant until a preceding redundant negate was

removed.

It should be noted that the other LOWL programs require

extensions to the basic run-time system rather than not

needing it all as ALGEBRA.

In ALGEBRA a phenomenal saving can be obtained by

detecting special cases such as MESS'' which occur

frequently, and could be translated into parameterless

special subroutines, rather than the general subroutine

MESS with one parameter.

Basically the second pass is a GPM using warning characters

-31~-

colon and semicolon for the standard dollar sign and

semicolon.

The full details of the transformation are as follows.

1) All instructions and subsidaries (OF and RL) must

be written between a matching pair of colon and

semicolon with their parameters separated by commas.

Redundant spaces must be eliminated,

2) Labels must be written between ':LABEL,' and ';!

Thus

{ecin}

becomes

:LABEL, BEGIN;

3.5 Translation: Pass two

Machine dependent constants occur only in the macro OF

in a form no more complex than

Where 'S' represents either an unsigned integer or one

of the names -

LNM,LCH,LICH taken as 1

LHV taken as 32

The quote symbol is a new warning character and indicates

to the LOWL translator the delimitation of a character or

character string where, obviously, no other warning

characters may be recognised.

Unpacked strings are translated by the macro STR, into an

internal code designed to simplify some of the LOWL

operations on characters.

=32-

A digit is represented directly by its value. A letter

is represented by its ISO value but with bits 18 and 17

set, i.e. its value plus 600000 octal. Any other

characters are represented by their ISO value (with even

parity) plus 500000 octal, or bits 18 and 16 set. Thus

bit 18 determines whether the character is a digit;if it

is not a digit bits 16 and 17 determine whether it is a

letter or not alphameric.

Strings for MESS are packed three characters per word

using the macro MESSX. The format is that of SIR

alphanumeric groups and is terminated by a quote ''',

Note that the dollar represents a newline in LOWL and

is translated to 500215 by SIR and up-arrow by MESSX.

LOWL has a pseudo-instruction

IDENT variable-name, integer

to equate a name with a number. The name is then used

freely where an integer is permitted. The problem this

causes is overcome using the macro 'S', which is the

inverse of IDENT, and converts named constants into

integer form. 'S' is required as there is no equivalent

facility for naming constants in SIR.

The LOWL translator must keep track of the sign of its

SIR register, This is done by an internal flag which can

take on values for 'register negative', ‘register zero!

and 'register positive’.

-33-

A special warning character '@' (at) or 'S' (grave) is

used as follows:

@N

@Z

e@P

er

@B

set flag to negative

zero

positive

change sign

set flag to positive and generate "2+0" if

it was negative.

The macro 'A' chooses one of its three parameters

according to the flag status.

Various LOWL instructions translate into especially

simple SIR instructions. The table below lists all the

cases that are recognised and treated specially.

Table 3.2

BUMP with 0, 1 or 2

AAL 0

SUB e)

MULTL with 0, 1 or 2

GOSUB ruti-time routine system

LAL O following CLEAR

LAV’ var,R \ after CAL 0

LAI a

~34-

3.6 Transput

The final LOWL translator, as described, above was

exceedingly slow. However its speed was increased to an

acceptable level by changing the input~output routines.

Originally the translator read a macro-call and then

generated the output translation. This meant that the

reader and punch were alternately standing idle. By

buffering the input, and interleaving reader and punch

use whenever possible, neither peripheral need stand idle

for so tong, and considerable savings result.

The general method is described below:

On the 903, too frequent peripheral transfer requests

cause the processor to hold up.

If a transfer is attempted before the peripheral has

finished handling the last transfer, there is no way that

the program may continue and there is no way that this

situation can be detected.

It is up to the program to time its transput so as not

to attempt transfers too frequently.

In general it is not a simple matter for a program to

generate requests at a suitable rate in the absence of

a real time clock, which is not available on the 903.

However the device response time does give a program a

known delay; suitable alternation between peripherals

will give a maximal data transfer rate, irrespective of

the behaviour of the program between transfers.

The paper tape punch has a response time of 9ms, and the

reader 4ms. A program that reads n characters and then

~35-

punches m characters in cycles will require

4(m-2) + 9(m-1) ms per cycle,

assuming n-2 and m-1 are positive.

But if the transput is suitably organised the same number

of characters can be transfered in

max (4n,9m) ms per cycle.

To achieve this means that whenever possible the transput

routines must read two characters for every one punched,

though not necessarily in that order.

Since the program is unlikely to conform to this strategy

the transput routines must queue excess characters until

they can be handled by peripherals or program.

Suppose the transput routines have a common variable

which by its value indicates the next actual peripheral

transfer that should be attempted.

What action should the routines take if the program

request is conflicting?

1. The output routine could:

(a) queue the output character, to be output later

or(b) queue some input, to be used by the input routine

later

then output its character

2. The input routine could:

(a) output some of the output queue

then input its character.

~ 364

or (b) take a character off the input queue

These actions must be modified when the queues are

either empty or full; this situation means relaxing the

ideal alternation between input and output for a

time.

Suppose the two queues are both half full, then it is

readily apparent that both routines need only work on

the ‘saine queue for the desired effect.

Indeed, with the input queue neither full nor empty

there is no need for the output queue at all, and vice

versa.

Thus there is only need for a single queue assuming that

it is sufficiently large, and contains a sufficient

reserve of characters at all times.

There is only need for one queue, either for input or

output only, but it must be initialised with some reserve.

Without more knowledge of the program, say, that it

starts by printing a title page which could be used to

build a reserve in an output queue before ever the

input routine is called, then it is only possible to

build’ this reserve in the input queue.

Because building this reserve now involves peripheral

transfers, it is actually a waste of time to deliberately

set up a reserve.

If one queue becomes full, the action the program might

take if it had two queues would be to queue characters

-37~

in the other queue (for the other peripheral) until

some characters could be removed from the first. But if

there is storage available to extend the second, why not

use it for the first?

The routines only need one queue. Which: input or

output? To decide the issue, there is additional

information: if the paper tape punch .is not used for

several seconds, it powers down and will then require

a significant time to return to running conditions.

Characters for output should be punched as soon as

possible. If there is an output queue, this simply

increases the potential delays between punchings and

therefore the probability that the punch powers down. :

In the programs described in this report, input queueing

has been used with considerable increases in run-time

speeds.

The input queues have a maximal length of 128, the

smallest power of two larger than the length of a line.

The increase in speed is about 30% for programs with a

unity expansion on data, the number of characters punched

being the same as the number read.

Note that this algorithm is only relevant for systems

that have no alternative to non-autonomous peripheral

transfers.

=38-

3.7 Summary of LOWL

Statements in LOWL are written one to a line and

possibly preceded. by a label which is at most

six characters in length and enclosed in square

brackets.

Mnemonic operation codes are preceded by a tab, and

if there are any arguments they are followed by a tab

and a list of arguments separated by commas. Each

operation code has a fixed number of arguments, some

have none.

Arguments that are literal strings are enclosed in

quotes ('). No argument is ever null; instead the letter

X is used to indicate that an argument is not applicable.

Blank lines are used to improve program layout.

Some LOWL statements have supplementary arguments which

are used to convey extra information about the

statement, for example a jump statement might be

written

GO L,200,E,T

This means jump to label L which is 200 statements later.

The E means that the jump leaves a subroutine and the T

that this jump is in a switch sequence.

Almost all statements in LOWL involve a storage address

and may use one of three notional registers as follows.

A is the numerical register

B is the index register

C is the character register

-39-

LOWL statements may have constants for arguments which

may either be numerical, character, mnemonic or a call

to the macro OF.

The macro OF is used to evaluate expressions using

mnemonic constants that help describe the LOWL mapping.

The argument of OF is an expression of the form

The 'S' represents either an unsigned integer or one of

the mnemonics:

LCH the number of storage units occupied by

a character

LNM - the number of storage units occupied by

: numerical data

LICH =1/LCH

These mnemonics each have a value of one for the 903

LOWL translator.

There are additional mnemonics for some LOWL programs,

LHV represents the size of ML/I hash tables (32) for

instance.

3.8 LOWL instructions

1) Data types Character

Number (integer or pointer)

2) Variables Represented by an indentifier

3) Constants Numerical: integer or a call to OF.

Character: a single character in quotes

-~40-

4) Registers Three: A,B and C

5) Labels represented by identifiers

6} Subroutines at most one argument

The basic form of LOWL has 60 different instructions

which are described in the supplementary material to

this report.

In addition to the basis of 60 statements, each LOWL

program (excepting LOWLTEST) have a few additional

statements.

In the basic LOWL there is a statement

MESS “string

which should output string to the monitor stream. In

the program ALGEBRA this idea is extended to include

RMESS ' ‘string

QMESS ' ‘string

where the stting should be printed on the result and

question streams respectively.

The other LOWL programs have many more extensions.

The run-time system for each LOWL program consists of

code written directly in SIR and occupies between 700

and 1K words for the different programs.

The run-time system can be divided into six sections:

-41-

1) Initialisation

2) Transput routines

3} LOWL statement routines

4) Machine dependent program routines

5) Interrupt handling

6) Dumping routine

Initialisation

The initialisation code has all the entry points to the

program, and at the start of a session identifies the

program and its version number.

The input/output buffers are set up and pointers are set

to delimit the LOWL program stacks.

Transput routines

These routines perform all input/output and character

code conversions. The routines may use buffers.

All formatting is performed by these routines, coping

with tab characters and lines that are too long to be

printed in one go,

LOWL statement routines

Many LOWL statements require operations that are too

complex to be mapped into just a few SIR instructions.

These cases are dealt with by subroutines in the run-

time system.

Examples are the stacking operations, block moves and

logical operations,

These routines are in SIR either because they involve

data conversions or machine dependent operations.

-~42-

Examples are converting an integer into a numeric

string or calculating hashing codes.

Interrupt handling

All the LOWL programs can handle interrupts, though

these are usually ignored by the LOWL program as

peripheral transfers on the 903 do not use the interrupt

system. However all the programs should be able to

run under the RADOS operating system without clashing

with the system requirements.

Note that the random access disc operating system

(RADOS) does not run on the O.E.C. 903.

Dumping routine

For those programs that can be restarted once they have

been initialised, the dump routine will dump the entire

program onto paper tape in its state at the time of the

dump.

A dumped program should be entered at its break-in

entry point, otherwise it will reset itself and lose

the information for which it was dumped.

4.1 ALGEBRA

The ALGEBRA system allows the user to define a set of

objects and then to define a set of operators that can

be applied to those objects. Once the objects and

operators have been defined the user can investigate their

properties in a conversational manner by evaluating

expressions involving variables, constants and operators.

43 ~

The use of ALGEBRA is fully described elsewhere

(Brown, 1974). The program is.fully described in the

project ‘supplementary material.

4.2 Using ALGEBRA

The 903 ALGEBRA system is distributed as a single SCB

tape which may be loaded under initial instructions.

The system is entered at 8 and may be broken into

at any time by entering at 9, ALGEBRA then types,

** BREAK IN

on a newline and the user can continue where he left

off.

It may be dumped by entry at 10, and the dumped program

should be entered at 9 if the objects and operators

are to be preserved.

-44-

ML/I

2
ML/I is fully described elLsewhere; what follows is an

appendix for the ML/I User's Manual for the ML/I version

AIG for the 903. The section numbers conform to the

references to machine dependent appendices in the user's

manual.

‘5.1 Restrictions and additions

This version of ML/I supports all the features described

in the ML/I User's manual (4th edition 1970) plus

additional features one to five as described in that

manual.

The version number is AIG.

5.2 Operating instructions and input/output

ML/I is distributed as a single SCB tape which may be

loaded under initial instructions in the normal way.

Entry is at 8; there is no entry point for continuation.

The program takes source text from the reader and sends

generated results to the punch. Monitor reports are

printed on the on-line teleprinter.

The punch output should not normally be redirected

to the teletype as this will disturb the monitor

formatting.

5.3 Character set

The full ISO set is recognised, in particular lower

case letters may be used as in section 2.2 of the manual.

Runout, rubout and carriage return are all ignored

~A5~

unless defined as the source stream terminator, see

appendix section 7.

Input is checked for even parity, illegal characters

are replaced by the error character which is a

backarrow.

i 5.4 Error messages

The number 2 of section 6.2(f) is 60.

The message of section 6.3.12 is given at the end of

every monitor message,

‘3.5 Integer calculations

‘All integers should be kept within the range - 131072 to

+131071. Overflow is not detected except in the case of

division by zero. The numeric effect of overflow is not

defined.

The 903 inplementation supports the following keywords:

SPACE meaning a space

NL newline

SL start of line

TAB tab

SPACES one or more spaces

There are ten system variables. S1 to $9 have their

meanings as assigned in the user's manual and S10 is

the value of the input stream terminator, set to 20 (for

halt) by default. S1O is compared with the value of

characters input before verifying correct parity, and may

“be 9, 255 or 141 if required for runout, rubout or

carriage return.

~46—

APPENDIX

A. The 903

A.l

a
a
a

P
U
N

Addendum

References

and its assembly language

description of the 903 1
the assembly language SIR
program structure 6
information given by SIR 7

4

A.1 Description of the 903

The 903 is a binary machine with an 18-bit word length

and an internal memory of 8192 words. There is a simple

priority interrupt system but no use can be made of it

on a basic 903 without fast peripherals.

An instruction is stored and interpreted in the following

manner

B | F | N

bit 18 | bits 17-14 | bits 13-1

Bits 13-1 (Address field)

Address bits which specify any of 8K locations or a

more complete specification of the instruction action if

there are no store accesses involved, as in an output

instruction, where the address field will specify a

particular peripheral.

Function bits which specify the operation to be

performed.

Bit 18 (Modifier bit)

If it is a zero, the instruction is obeyed as it is

stored. If the modifier bit is a one the address

field is modified by adding it to the modifier register.

Any overflow does not affect the function (or modifier 1)

bits,of course.

A program has access to four registers, two of which

reside in core, and two in the core store itself.

-Al-

The A-register is used for arithmetic and as data for

peripheral transfers. It is 18 bits in length, augmented

by an extension register, the Q-register, which is

mainly to facilitate operations on a fixed point

representation of the 18 bit words.

The B-register is the modifier and is identified with

location 1 in core. It is 18 bits in length.

The S-register, or sequence control’ register determines

the location in core of the next instruction to be

obeyed. For a basic 900, then, only the low order 13

bits are of any significance. The S-register is

indentified with location 0 in core; though attempts to

manipulate it, while strictly unnecessary, cause

unpredictable results.

The interrupt system provides for pairs of B and S

registers in locations 0 to 7 inclusive while the

A and Q registers are shared.

Core locations 8180 to 8191 inclusive are used for a

hardware loader and this area is only available for

reading or executing.

The instruction set of sixteen operations is as follows:

bits 17-14

ie) load the B and Q-registers

1 add to the A-register

2 negate A-register and add

3 store Q-register

~“A2-

10

11

12

13

14

15

Notes

load A-register

store A-register

_ collate with A-register

jump to address if A-register is zero

unconditional jump

jump if A-register is negative

increment; count in store

store Ssregister

multiply A-register

result into (AQ)-register

divide (AQ)-register

result into A-register

shift the (AQ)-register, preserve sign bit

input/output

1. Modifications and some instructions affect the

Q-register in an undefined way.

The instructions 7, 8, 9, 14 and 15 take as their

operand the address field directly.

The Q-register is sometimes treated as a 17 bit

register. Such occasions have not been indicated

above.

-A3-

A.2 The assembly language, SIR

The assembler, SIR, stores constants which may be

described in a variety of formats, in consecutive

locations of memory.

‘SIR can fill out references to undefined names when

their definitions occur and at the end of the program

set a table of all constants referred to by the program.

A name begins with a letter and is followed by letters

or digits alone. Only the first six characters of a

name serve to distinguish it from any other.

A name can represent a 13 bit integer constant, and

it may be set explicitky as in L=6 or by using it as

a label.

Values to be loaded as part of the program may be

represented in decimal, octal, character, fixed-point

or instruction form.

1) decimal representation

‘sign digits

The sign must be '+' or "=" and there must be at least

one digit. The absolute value of the number must be

less than 131072. Note that this specifically

excludes -217 = -131072 although this has a valid

internal form.

2) octal representation

& digits

The digits must individually have a value between

0 and 7 inclusive. There must be at least one digit,

and no more than six.

-A4-

3) character representations

4)

£ characters

The characters are converted into an internal 6 bit

code (called SIR code) allowing an optimal packing

density of three characters per word. This is

termed an alphanumeric group.

fixed~point representation

5)

Sign . digits

Where the details are as in the decimal representation.

Note that this format excludes a representation for

-1, which has a valid internal form.

instruction representation

If the instruction is to be modified, it is precedéd ©

by an oblique.

The instruction code is represented by an unsigned

decimal integer between 0 and 15 inclusive.

The instruction code is followed by the address field

which may have any one of the following forms.

1)

2)
3)

unsigned integer

’ name

name signed integer

a constant

e.g. signed integer

sign . integer

& octal-integer

= an instructiom with unsigned integer address

* rAS-

Examples

4 256

/7 SW

6 &77

The various forms of the field have their obvious

meaning : the semicolon represents the current location

in core. The constants are located entirely by the

assembler, and are replaced by references to the value

in the address fteld. Thus 440 is a concise way of

loading zero somewhere and loading an instruction which

uses it.

A.3_ Program “structure

The SIR program is sectioned into blocks to facilitate

scoping of names and permit linkage loading.

A name that the assembler retains beyond the period of

reading a program is a global name. A block begins with

a specification of all global names that occur within

it. Names not mentioned in this global heading are not

accessible outside the block and consequently must be

defined within it.

It is convenient to have a scoping which permits

communication between separate blocks of the’ same program,

but not between blocks of different programs, A name

that has these scoping rules is called sub-global and

is written in the global header of a block, but marked

with a special character.

~A6™

Obviously a subglobal must be defined by the program

that uses it.

The end of a block is markéd by the header for the next

block.

The end of the program is marked by a percent symbol,

and is an instruction to SIR to eliminate subglobal

names from its dictionary and to locate all constants

to which instructions within the program have referred.

A.4 | Information given by SIR

The SIR assembler lists definitions of names as they

occur with an indication of their scope.

Errors are indicated by a message of the form

En an

printout of the current line

The significance of the various numbers (n) may be

determined from a suitable manual. They mean: the error

number, the current line number and the current assembly

address, respectively.

On reading the end of the program marker, SIR gives a

list of undefined globals and subglobals, the first

address and the last of the program just assembled.

~A7~

Addendum (12 May 1976)

Throughout this text descriptions that, since writing,

have required modification are indicated by a vertical

bar adjacent to them in the left hand margin. This

addendum explains the modifications.

A halt code character is now treated as a warning

character, and may be changed by entering the GPM at

- 34,

Monitor messages use string quotes (not round brackets)

to enclose text.

In section 2.13.3, and subsequently, the zero word

immediately lower down the stack than the trace flag

is now eliminated. This is possible because the trace

flag is either 0 or -1; both values cannot occur as

external characters and are therefore quite simply

illegal. The illegality is detected just before an

attempt to output or during a loadarg copy process.

The monitor message INVALID CALL may be caused by an

improper call to macro COND.

ML/I, SCAN and UNRAVEL are at present being implemented

using, and for, the 16K Elliott 905 at the Royal College

of Art. Here the process has been to use the LOWL

processor described earlier to translate LOWL into part

code and part MASIR macros, thus enabling macro

generation for 8K or larger computers.

ML/I will not be re-issued for the 903, because there

Was a parity error in output of characters.

References

1. BROWN, P.J. (1974)

Macro Processors

John Wiley & Sons

2. BROWN, P.J. (1974)

ML/I User's Manual

University of Kent

3. BROWN, P.J. (1972)

SCAN: A simple conversational programming
language for textual analysis

Computers and the Humanities (6.4)

4, STRACHEY, C. (1965)

A General Purpose Macrogenerator

Computer Journal (8.3)

5. FAIRTHORNE, S. & MEEK, BsL. (1969)

903 SIR programmer's guide

General Electric Company

6. BROWN, P.J. & THIMBLEBY, H.W. (1976)

900 SCAN reference manual

Royal College of Art

7. GIMPEL, J.F. (1976)

Algorithms in SNOBOL4

John Wiley & Sons

8. BROWN, P.J. (1972)

UNRAVEL - a programming language to put
intelligence into dumps.

Computer Journal (16.1)

